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58 1. RANDOM VARIABLE THEORY 

So the corresponding Fi functions in Eqs. (1.8-14) are 

F 1(s) ll: I: Q 1 (s') ds' = 1 - exp(- s2/2a2), 

F (6;s) a I e Q(l)(e' Is) d6' = _!_ . 2 o 2 2o 
Now we are in a position to make use of Eqs. (1.8-15). Specifically, letting 
r1 and rz be two independent unit uniform random numbers, we first set 
Ft (s) = r1 and solve for s, and we then set Fz(6;s) = rz and solve for e. The 
results, after replacing r1 by the equally serviceable unit uniform random 
number 1- r1, are 

Then taking 

(1.8-16a) 

x1 = m + S COS9, Xz = m + S sin9, (1.8-16b) 

in accordance with the formulas relating X1 and Xz to Sand 0, we finally 
obtain the desired simultaneous sample values x1 and x2 of the 
statistically independent normal random variables X1 and Xz. So, 
although we cannot analytically transform a single unit uniform random 
number r into a sample value x of N(m,a2), Eqs. (1.8-16) provide a simple 
recipe for analytically transforming a statistically independent pair of 
unit uniform random numbers r1 and r� into a statistically independent 
pair of sample values Xt and xz ofN(m,a ). We shall find frequent use for 
the generating algorithm (1.8-16) in later chapters of this book. 

-2-
GENERALFEATURES OF AMARKOV 

PROCESS 

In this chapter we shall use the concepts of random variable theory 
set forth in Chapter 1 to define a Markou process and broadly frame its 
fundamental properties. This will involve introducing the key functions 
that are used to describe Mark·ov processes, as well as deriving some 
general equations which those functions must obey. We shall quickly 
discover that any substantive characterization of a Markov process 
requires that we specify the form of what is called the propagator cknsity 
function. In Chapters 3 and 4 we shall consider two different ways of 
specifying that critical function, which specifications lead t o  the two 
principal classes of Markov processes called "continuous" and "jump." In 

present chapter we shall see how the propagator density function 
comes to play its pivotal role in Markov process theory, and we shall 
develop that theory as fully as we can without committing ourselves to a 
specific form for the propagator density function. 

2.1 THE MARKOV STATE DENSITY FUNCTION 

We consider a time-evolving or "dynamical" system whose possible 
can be represented by points on the real axis, and we let 

X(t) = the state point, or state, of the system at timet. (2.1-1) 
e shall assume that the value of X at some initial time to is fixed, 

X(t0) = x0, (2.1-2) 
that X(t) for any t>to can be predicted only probabilistically; more 

, we assume that X(t) for any given t> to is a random variable, 
defined in Section 1.2. Since it makes sense to inquire about the state 

!19 



60 2. GENERAL FEATURES OFA MARKOV PROCESS 

of the system at successive instants t1, t2, . .. , t11, where to< t1 < t2 < ... < t11, 
then we can ascribe to the corresponding n random variables X(t1), X(t2), 
... , X(tn> ajoint density function P11m, which is defined as follows: 

11) P (x ,t ; x 1,t 1; ... ; x1,t11 x0,t ) dx dx ··· dx n ·n n n- n- 0' n n- L 1 
= Prob{ X(t1)E[x1,xi+dx;) fori= 1,2, ... ,n, 

given that X(t0) =x0, with t0st1 s ... St11 }. (2.1-3) 

If all these assumptions are satisfied, then we say that X(t) is a 
stochastic process. 

It is evident that a stochastic process X(t) has infinitely many joint 
density functions P1110, corresponding ton= 1, 2, .... And associated with 
each of these joint density functions is a plethora of subordinate density 
functions; for example, 

P111�;n(x11,t11; ••• ; xJ+ 1,t J+ 1lxj,t1; . .• ; x1,t1; x0,t0), 
is defined to be the joint density function of the n-j random variables 
X<t1+1> • . . .  , X(t11) given the j+ 1 conditions X(tol=xo, X(tt > =x1 , ... , 
X(t) =xJ" Notice that the subscript on the density function Pk(J) refers to 
the number of (x,t) pairs to the left of the "given" bar, while the 
superscript refers to the number of (x,t) pairs to the right of the "given" 
bar; thus, pkiJ) is a k-variate joint density function withj conditionings. 

It is always possible to calculate the function P11 _111> from the 
function P11°> by simply integrating the latter over any one of the 
variables x1, ... , x11• However, it is not in general possible to deduce the 
function Pn+ 111) from the function P11m. This "open-ended" nature of the 
density functions for a general stochastic process usually makes any 
substantive analys's extremely difficult. But we shall be concerned here 
with only a very restricted subclass of stochastic processes, namely those 
that have the "past-forgetting" property that, for allj�2 and t1_1 st., 

P?<xi 1 lx1 _ 1,t 1_1; ... ; x1,t1; xO't0) 

- P 11>< t I t > - P( I ) - l x1, J XJ 1, . l :a X ,t . X. 1,t I . - J- J J J- J - (2.1-4) 

This is called the Markov property, and it says that only the most recent 
conditioning matters: Given that X(t') =x', then our ability to predict X(t) 
for any t>t' will not be enhanced by a knowledge of any values of the 
process earlier than t'. Any stochastic process X(t) that has this past­
forgetting property is called a Markovian stochastic process, or more 
simply, a Markov process. In what folfows it may always be assumed, 

.; 

2.2 THE CHAPMAN-KOLMOGOROV EQUATION 61 

unless explicitly stated otherwise, that the stochastic process X(t) under 
consideration is a Markov process . 

The Markov property (2.1-4) breaks the open-endedness of the 
hierarchy of joint state density functions in a dramatic way. For the joint 
density function P21u we have 

P 'n< . I > 2 x2't2, x1,t1 xo,to 

= P: 1'<x1,t 11 xO't0) P : 2
'<x2,t21 x 1 ,t 1; x0,tJ (by (1.5-9d)) 

[by (2.1-4)1 

Hence, writing P1 1 ll a Pin accordance with the notation suggested in Eq. 
(2.1-4), we have 

P � ll(x2,t2; x1,t 11 x0,tJ = P(x2,t21 x 1,t 1) P(x1,t 11 x0,t0). (2.1-5) 

The same kind of reasoning shows that 

P � u(x3,t3; x2,t2; x1,t 11 x0,tJ = P(x3,t31 x2,t) P(x2,t21 xl't 1) P(x 1,t 1 I x0,t0), 
and more generally, for any set of times t11 �tn -1 � --- �to. 

n 
p l l)(x ,t ; ... ; xl,t 11 xo,to) = n P( X ,t I X l't l). n n n 1 1 1- �-i= 1 

(2.1-6) 

So for a Markou process, every conditioned state density function P11111 
can be written solely in terms of the particular conditioned state density 
function P111 ) •P. The function P110=P thus becomes the principle focus 
of our study, and we shall henceforth refer to it as the Markov state 
density function. For future reference, the formal definition of the 
Markov state density function is [cf. Eq. (2.1-3)1 

P(x2,t2 1 xl't1) dx2 
= Prob{ X(t2)E [x2,x2 +dx2), given X(t1) =x1, with t2 � t1 }. (2.1- 7) 

2.2 THE CHAPMAN-KOLMOGOROV EQUATION 

Since P<x2.t2l xt,ltl is a density function with respect to its argument 
.t2, it must satisfy conditions analogous to Eqs. (1.2-3) and ( 1.2-4), 
namely, 

kippenbe
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62 2. GENERAL FEATURES OF A MARKOV PROCESS 

P{x2,t2 I xl't1 > � o. (2.2-1) 

J �"" d.r2P(.r2,t21xl, tt) = 1. (2.2-2) 

Also, if we let t2 eoual its minimum value t1 then the condition X(t1) =.r1 
obviously implies that X(t2) = Xt. or that X(t2) is the sure variable .r1; 
hence, by ( 1.2-7), we have the requirement 

P<x2, t2=t11x1,t1) = 8(x2-.r1). (2.2-3) 

Of course, the function P would have to satisfy the preceding three 
equations even if the process X(t) were not Markovian. A condition upon 
P that arises specifically because of the Markov property may be deduced 
as follows: For any three times t1 s t2 s ta, we have 

P(l) 
1 (.x3,t31 x1,t 1) 

= J �"" dx2 p � l)(.x3,t3; .x2,t21 .xl ,tl) [by (1.5-12a)l 

-f ... d P1u< t I t >P'2'< I lb - -co .r2 1 .x2, 2 .xl, l l x3,t3 x2't2; xl,t 1) y ( 1.5-9d>l 

= f �"" d.r2P:u(.x2,t21.x l'tl)P;D(.x3,t31.x2,tt, [by (2.1-4>1 

where the last step explicitly invokes the assumed Markovian nature of 
X(t). �nt�rchanffing the two factors in the last integrand and then 
abbrevtattng Pt > everywhere by P, we obtain what is known as the 
Chapman-Kolmogorov e quation: 

P(.x3,t31:rl,tl) = J :oo P(.x3,t31x2,t)P(.r2,t 21xl,tl)d.x2 
(t1 St2St}- (2.2-4) 

This integral equation, a graphical interpretation of which is given in 
Fig. 2-1, is essentially a consistency condition on the Markov state 
density function P for any Markov process X(t). As we shall see later, it 
severely limits the range of acceptable functional forms of P for any 
Markov process. 

Because of the initial condition (2.1-2), the quantity P{x,t 1 x0,to) is of 
special importance. As we shall see later, time-evolution equations for 
P(x,t I xo,to) can be derived from two specially phrased versions of the 
Chapman-Kolmogorov equation, obtained by relabeling the variables .x, 
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time axis 

z-axis at time t1 

Figure 2-1. Graphical interpretation of the Chapman-Kolmogorov equation 
C2.2-4J. The probability Ptxa.l;dx1,t1)d:c.1 of going from x1 at time t1 to the 
interval lx.1,xa+d:c:1) at time t:1 can always be written as the sum of the 
probabilities of this occurring via all possible intervals l.x:.�,.x2 +d.x2l at any 
fu:ed intermediate time t2. When the Markov property 12.1-4) holds, the 
summand takes the form lP(xz,lz l x1 ,t1>d:czJ X lPixJ,(d xz,t2)d.x.,J, whence the 
integral equation 12.2-4) for the function P. 

and ti according to the two diagrams in Fig. 2-2. These two "utility" 
of the Chapman-Kolmogorov equation are as follows: 

P(x,t+t.tl.r0,tJ = J �oo d� P(x,t+t.tl.r-�t) P(.x-f..tlx0,tJ 
(t0<t<t+t.t>; (2.2-Sa) 

P(x,tlx0,t0) = J � ... d� P(x,tlx0+f,t0+6tJP<x0+�,t0+t.t01x0,t0) 
(t0 < t0 + t.t0 < t>. (2.2-Sb) 

.............. w'" (2.2-Sa) will give rise to equations that govern the x and t 
of R.r,t I xo.to> for fixed xo and to, the so-called "forward" time­

lion equations. And Eq. (2.2-Sb) will give rise to equations that 
govern the xo and to behavior of P(.r,t I xo,to) for fixed x and t, the so-called 
"backward" time-evolution equations. Notice that t.t and t.t0 here need 
not be infinitesimally small. 



I. 
I 
I ' 
, , 

64 
2. GENERAl FEATURES OF A MARKOV PROCESS 

time time 

r 
% ------------�--� t+�t 

, '
II 

·-;\ : \ d( 
I I I I I I I 

I 

I I I I I I I I I 

% I I , , , , , . , , , , , , , , 
.ro xo+(/ 

% 

L , --r-----,},...' 1-----�� 1o + 61o 
t- (_,/1 \ 

/ "'- d( 
, ----------------�� .ro 

(a} (b) 
Figure �-2. Showing the initial, intermediate and final state variables for the two spec1al Chapman-Kolmogorov equations 12.2-5a) and !2.2-Sbl 

A
_
nother version of the Chapman-Kolmogorov equation that occas10�ally prove� useful for determining P(x,t 1 xo,to) is obtained as f?llows. By an obv10us extension ofEq. (1.5-12a), we have for any set of t1mes to< t1 < ··· < tn, 

P(xn,tnlxo,tJ= J"" dx -1··· / "" dx plll(x t · ... ·x t lx t) -oo n _., 1 n n' n' ' 1' l 0' 0 · 
Substituting from Eq. (2.1-6) on the right then gives the result / co I"" 

n P(xn,tnlxo,tJ = dxt ... dx nP( x.t.!x. t ) -oo -uo n-1 . 1' 1 1-l' 1-1 I= 1 
(t0< t1< . . . <tn). (2.2-6) 

This equation, which evidently reduces to Eq. (2.2-4) for n= 2 will be referred to as the compounded Chapman-Kolmogorov equation. 
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' r 
2.3 FUNCTIONS OF STATE AND THEIR AVERAGES 

' . 
• Any univariate function g that takes a value g{x) for any possible �· system state x can be regarded as a function of state. We can also think 
" 

of a function of state as a random variable g{X(t}), which is defined to be 
"the function g of the random variable X(t)" [see the discussion of Eqs. 
(1.6-l)J. The conditional state average, 

(g(X(t))IX(t')=x1} = J �00dxg(x)P(x,tlx1,t1) (t'!:t), (2.3-1) 

may accordingly be viewed either as (i) the average of the function g with 
respect to the random variable X(t) given that X(t1) = X1 1 or as (ii) the 

of the random variable g(X(t)) given that X(t') = X1 [see the t·u��;cu::,::m;•u following Eq. (1.6-12)]. 
Similarly, any bivariate function g can be used to define a two-time 

nl'r:tnn of state g(X(t1 ),X(t2)) for lt s t2, and its average or mean, given 
X(t1) =x1 for some t'!: t1o is 

(g(X(t1),X(t.)) I X(t1)=x1} = J �.., dx1 J �.n dx2g(x1,x2) P� l)(x2,t2; x1,t11 X1,t1). 
With the Markov simplification (2.1-5), this is 

• (g(X(t 1),X(t2)) I X(t') = x'} 
= J �00dx1J �00dx2g(x1,xzlP(x2,t21x1,t1)P(x1,t11x',t1) 

(t1st1 st.) (2.3-2) 

t' in Eqs. (2.3-1) and (2.3-2) is taken to be the initial time to, then we 
1 simply omit the conditioning notation; thus, the initially 

ed averages will be denoted by 

<g(X(t)) I X<tJ = xJ • {g(X(t))} 
= J �  ... dxg(x)P(x,tlxO't0) (t0st), (2.3-3) 

(g(X(t 1),X(t.)) I X(t0)=xJ 5I (g(X(t 1),X(t.j} 
= J �"" dx1J �"" dx2 g(x1�x.)P(x2,t21x1,t1)P(x1,t11x0,t0) 

(t0st1 st2). (2.3-4) 
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The most important applications of the univariate average (2.3-3) are 
to the two functions g(x) =x and g(x) = x2• This is because [see Eqs. ( 1. 3-6) 
and (1.3-8)1 the initially conditioned mean and variance of the process 
X(t) are given respectively by 

mean{X(t)} = (X(t)) (t0st) (2.3-5) 
and 

var{X(t)} = (�(t)) - (X(t))2 (t0 s t). (2.3-6) 

And the initially conditioned standard deviation of X(t} is given by 

sdev{X(t}} = [ var{X(t)}]1'2 = [(�(t)) - (X(t)}2]1'2 (t0 s t). (2.3-7) 

Given that X(to)=xo, then at any time t>to we can "usually expect" to 
find X(t} to be within roughly sdev{X(t)} of the value (X(t)}. 

The most important application of the bivariate average (2.3-4) is to 
the function g(x1,x2) =x1x2. This is because [see Eq. (1. 5-17>1 the 
covariance of X(tl) and X(t2) for tost1St2, given that X(to)=xo, is 
defined by 

cov{X(t1),X(t2)} • (X(t1)X(t2)) - (X(t1 ))(X(t2)} (t0s t1 s t2). (2.3-8) 

As shown in Eq. (1.6-18), cov{X(tt),X(t2)} is always bounded in absolute 
value by sdev{X(tt)}·sdev{X(t2)}. If cov{X(t1),X(t2)} assumes its positive 
bound then X(tt> and X(t2) are said to be maximally correlated, while if 
cov{X(tt),X(t2)} assumes its negative bound then X(t1) and X(t2) are said 
to be maximally anti-correlated. If cov{X(t1),X(t2)} = 0, then X(t1) and 
X(tv are said to be uncorrelated. One way in which X(t1) and X(t2) can be 
uncorrelated is for them to be statistically independent, in the sense that 
P<x2.tz I Xt.li) is independent of x1 (and hence also independent o f  t1); 
because in that case we have from Eq. (2.3-4), 

(X(t 1)X(t.}) ::: J :co dx1 J :co dx2 x1x2 P(x2,t21 x1,t 1) P(x1,t 11 xO't0) 

= J �co dx1 J :co dx2 x1x2 P(x2,t.) P(x1,t1) 

= J �co dx1 x1 P(x1,t1) J �01> dx2 .x2 P(x2,t2) 

= (X(t 1)) (X(t.)). 
So if X<t1> and XCt2) are statistically -independent, then cov{X(t1),X(t2)} 
vanishes, implying by definition that X(t1) and X(t2) are uncorrelated. 
But notice that X(tt) and X(t2) could be uncorrelated (i.e., have a 
vanishing covariance) without being statistically independent. 

2.4 THE MARKOV PROPAGATOR 67 

It is an instructive exercise to show directly for a Markov process that 

cov{X(t1),X(t2=t1)} = var{X(t1)}, (2.3-9) 

as we should expect on the basis ofEq. (1.5-18). We have from Eq. (2.3-4), 

(X(t )X(t =t )) = J 01> dxl J .. dx2 .x1.x2P(x2,t2=t11.x1,t1) P(x1,t11.xo,tJ 1 2 1 _.,. -co 

= J : 
.. 

d.x1 .xt.x1 P(.x1,t 11.xo,to> = (X2(t 1)). 

where the second equality follows from Eq. (2.2-3). Substituting this 
result into Eq. (2.3-8) with t2 = lt. and then recalling the definition of the 
variance in Eq. (2.3-6), we obtain Eq. (2.3-9). 

2.4 THE MARKOV PROPAGATOR 

Suppose that our system- our Markov process- is in the state �at 

time t; i.e., suppose that X(t} =.x. Then by the infinitesimall� la�er ttme 

t+dt, the system will have evolved to some new state that IS dtsplaced 
from x by the amount 

S(dt; .x,t) • X(t+ dt) - X(tl, given X(t) = .x. (2.4-1) 

Notice that the condition" X(t) =.x" in this definition affects the first term 
on the right side as well as the second. This state displace

_
ment S(dt; x,t) 

from state .x during time [t,t+dt) is clearly a random vartable; _ we shall 
call it the propagator of the process X(t). Like any rando

_
m vanable, the 

propagator is completely specified by its density funct1on. We s
_
hall 

denote the density function of E(dt; .x,t) by [](�I dt; .x,t), and refer to 1t as 
the propagator density function; thus we have, by definition, 

[]((I dt; x,t) d� = Prob{ S(dt; x,t) E [�.( + d() }. (2.4-2) 

Evidently, the propagator S(dt; .x,t) tells us where the process, in state 
x at time t will be at the infinitesimally later time t+dt; specifically, the 
process wiil be in the state x+S(dt; x,t). Here it is perhaps appropriate �o 
remark that we are regarding dt as a real variable whose allowed range IS 
the open interval (O,c), where cis positive but "arbitrarily close to 2ero." 
Although we shall always take c�1. so that (dt)2 is negligibly small 
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compared to dt, the precise value of e will depend upon the situation. For 
example, if we are considering a specific differentiable function h of the 
variable t, then we can always find a positive number e (which may 
depend upon t) such that h{t+dt) can for most purposes be equated to 
h(t) + h '(t)dt for all dt in {O,e). In our work here we shall never need to 
know the actual value of e, but merely that such a value exists. 

So the random variable E{dt; .r,t), and its associated density function 
ll(� I dt; .r,t), depend parametrically on the three real variables dt, x and t. 
We have chosen to notationally separate the parameter dt from the 
parameters x and t because, as we shall see later, it is possible for 
ll(( I dt; x,t) to be explicitly independent of x or t, but not of dt. In fact, it 
usually turns out that the moments of E(dt; x,t) have the analytical 
structure 

(E
n

(dt; x,t)) • J �"' d( C n<( I dt; x,t) = B n {x,t) dt + o{dt) 

(n= 1,2, ... ), (2.4-3a) 

where Bt(.r,t), Bz(.r,t), ... are all well-behaved functions of x and t, and o<dt) 
denotes terms that go to zero with dt faster than dt: 

o(dt)fdt- 0 as dt- 0. 
Equation (2.4-3a) essentially defines the functions Bn(x,t), as can be seen 
a little more clearly by dividing through by dt and then noting that 
o(dt)fdt can be made arbitrarily small by taking dt small enough; in other 
words, for vanishingly small dt we have 

1 1 f 0> B n (.r,t) = -
d 

�n(dt; x,t)) = - d( ( 
n n<( I dt; x,t) l dt -oo 

(n= 1,2, .. .). (2.4-3b) 

We shall call Bn(x,t) the nth propagator moment function of the 
Markov process X(t). Much of what follows in this chapter will be devoted 
to deriving some fundamental equations involving these propagator 
moment functions. Obviously, those equations will have meaning only if 
the propagator density function £7(( I dt; x,t) is such that the above 
definition of Bn(x,t) truly makes sense. As we shall discover in the 
following chapters, the propagator moment functions Bn(x,t> are nearly 
always well defined for Markov processes of practical interest. 

Notice that the propagator E(dt; .r,t), its density function {1(( I dt; x,t) 
and its moments (En(dt; x,t)) all need be specified only to lowest order in 
dt. This is because we can always choose the allowed range (O,e) of the 
variable dt to be arbitrarily small. 

... 
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There is a very important connection between the propagator density 
function ll and the Markov state density function P. To expose that 
connection, we observe that the definition (2.1-7) of P implies that, for dt 
a positive infinitesimal, 

P(x+(,t+dt I x,t)d( 

= Prob{ X(t+dt)E[x+(, x+( +d�) given that X(t) =x} 

= Prob{ [X(t+dt)-xiEl(,(+d() given thatX(t)=x} 

= Prob{ [X(t+dt)- X(t)IE[(,( +d() given that X(t) =x} 

= Prob{E(dt;x,t)E[(,(+d() }, 

where the last equality follows from the definition (2.4-1) of the 
propagator E(dt; x,t). Hence, by the definition (2.4-2) of the propagator 
density function fl(� I dt; x,t), we conclude that lsee Fig. 2-3)1 

ll((ldt;x,t) = P(x+�,t+dtlx,t). (2.4-4) 
So we see that the propagator density function fl(( I dt; x,t) is just the 
Markov state density function P(x' ,t' I x,t) in which x' exceeds x by the 
amount �. while t' exceeds t by the infinitesimal amount dt. Notice that (. 
unlike dt, is not assumed to be an infinitesimal; ( is an unrestricted real 
variable. 

time 

r r+l, 

.r·nxis at time t+dt 

r-axis at time 
r 

Figure 2-3. lllustrating the transition of the process from state x at time 
t to the interval(x+�. x+�+d�) at time t+dt. The infinitesimal nature 
of dl, allows us to write the probability for this transition to occur as 
Ptx+�.t+dt I x,tldl,. And because dt is likewise an infinitesimal, we can 
also express this transition probability as n!l, 1 dt; x,t)d�. 
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Because ll(� I dt; x,t) is a density function with respect to its argument 
�.then it must satisfy the two conditions 

and 
m � I dt; x,t) � o (2.4-5) 

J :.., d� ll(�ldt, x,t) = 1. (2.4-6) 

Furthermore, since it is clear from the definition (2.4-1) that S(dt = O; x,t) 
must be the sure number zero, then we must have [see (1.2-7)] 

ll(�ldt=O;x,t) = 5(�). (2.4-7) 

In addition to these three basic conditions on the propagator density 
function n, there is one more important requirement that follows from 
the fundament�! relation (2.4-4) and the Chapman-Kolmogorov equation 
(2.2-4). Accordmg to the latter equation, P must satisfy for any At> 0 and 
any value of a between 0 and 1, 

P(x + �t+ At I x,t) 

= J : ... d�1 P(x+�t+Atlx+�1.t+aAt) P(x+�1,t+aAtlx,t) 

== J : ... d�1 P(x+(1 +(-�1• t+aM+(l-a)Atlx+(1,t+aAt) 

XP(x+�1,t+ a At I x,t). 

Then taking At to be the infinitesimal dt, it follows on substituting from 
Eq. (2.4-4) that 

ll(�l dt; x,t) = J : ... d�1ll(�-�11 (1-a)dt, x+�1,t+adt)ll(�11 adt,x,t). 

(2.4-8) 
This condition, which must hold to lowest order in dt for all a between 0 
and 1, will be called the Chapman-Kolmogorov condition on the 
propagator density function. It and conditions (2.4-5)- (2.4-7) serve to 
restrict the possible functional forms that can be ascribed to the 
propagator density function ll(� 1 dt, :x:,t). �� can gain a little more insight into the Chapman-Kolmogorov 
condttlon (2.4-8) by writing it in the equivalent form 

llC( I dt; x,t) = J �"' d�1 J :,., d�2 ll(�11 adt; x,t) 

Xll(�21 (1-a)dt; x+ �1,t+adt) 5((- �1- (2), 

'4.�; � I' ·t. 
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from which Eq. (2.4-8) readily follows by integrating over �2 with the help 
of the delta function. Viewing this last equation in light of the RVT 
theorem (1.6-4), we see that it implies the following functional relation 
among three random variables corresponding to (, (1 and (z: 

S(dt; X(t),t) = S(adt, X(t),t) + S((1-a)dt; X(t) +S(adt;X(t),t), t+ adt). 
(2.4-9) 

Although this relation may at first glance appear to be very complicated, 

it is merely the statement that {the change in the process over (t,t+ dt)} 
-� must be equal to {the change in the process over (t,t+adt)} plus {the 

subsequent change in the process over (t + adt,t + dt)}. The random 
� variable relation (2.4-9), which again must hold to lowest order in dt for 

all a between 0 and 1, is entirely equivalent to the density function � \. relation (2.4-8). Either may be referred to as the "Chapman-Kolmogorov J.. condition." 'f The importance of the propagator density function ll lies in the fact 
that it completely determines the Markov state density function P, from 
which of course everything knowable about the (Markov) process X(t) can 
be computed. This fundamental fact is not readily apparent from Eq. 
(2.4-4), which shows rather that a knowledge of P implies a knowledge of 
fl; however, it can be proved by reasoning as follows. 

In the compounded Chapman-Kolmogorov equation (2.2-6), let tn == t 
be any value greater that to, and let the points t1,lz, ... ,tn - 1 divide the 
interval Lto,t] into n subintervals of equal length (t- to)ln. Further, 
change the integration variables in that equation according to 

x.- �- = x.- x. 1 (i=1, ... ,n - 1 ). I I I 1-
Notice that the Jacobian determinant of this transformation has zeros 
everywhere on one side of its main diagonal, and ones everywhere on its 
main diagonal, so dr1···drn- 1 =d�1 .. ·d�n-1· Notice also that this 
transformation implies that 

x. = x. 1 + � = [r. 2 + �- 11 + �-·= ... = x0 + �1 + ... + ��-· I 1- I 1- 1- I 
Finally, relabel xn=x, and define �n31EX-Xn-1· With all these changes, 
the compounded Chapman-Kolmogorov equation (2.2-6) becomes 

P(x,tlx0,tJ= I � ... d�1·•• I � ... d(n- l 
n 

X n P(xi_1+(i, ti_1+(t-tc)lnlxi-l'ti_1), (2.4-10) 
i= 1 

wherein 
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(i= 1, ... ,n-1), (2.4-lla) 
xi = xo + �1 + ... + �i (i= 1, ... ,n-1), (2.4-llb) 
� = x-x -r r n 0 "' 1 - ... - "n - 1' (2.4-11c) �e

l 
emphasize tha.t Eq. (2.4-10) is merely the compounded Chapman-0 mo��rov equ�twn (2.2-6) in which the intermediate times t t· tn -1 d1v1de the mterval (t-to) evenly and the i t t' 
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n 
P(x,tlx0,t0) = J �"' d�1··· J �"'d�n-1 D1ll(�ildt;xi_1,t,_1), (2.4-12) 

'- where now all four of Eqs. (2.4-11) apply. This result shows that if we 
specify il(� I dt; x' ,t') as a function of � for all x', all t' E [to ,t), and all 
infinitesimally small dt, then P(x,t I xo,to) is uniquely determined for all x. 

Although Eq. (2.4-12) gives proof to the assertion that the propagator 
density function li completely determines the Markov state density 
function P, that formula would not seem to afford a universally simple 

� means of actually computing P from ll. Notice in particular the 
·/ potentially complicated dependence of the integrand in Eq. (2.4-12) on 
· �· the integration variables through the functions Xi defined in Eq. 

·�t (2.4-llb). In the next section we shall consider a different way of using � Vr:' :'h. the Chapman-Kolmogorov equation and the fundamental relation (2.4-4) J�: · to compute P from a knowledge of ll. But first it might be appropriate to 
.�: 

. 
make some general observations about the rationale for any method that 

,f\ seeks to calculate P from rr. ' To say that we must specify li in order to determine Pis, because of 
Eq. (2.4-4), to say that we must specify Pf.x' ,t' I x,t) for t' infinitesimally 
larger than t in order to calculate P(x' ,t' I x,t) for any t' larger than t. This 
may seem like circular reasoning, but it does have an obvious precedent 
in mathematical physics in the elementary problem of a particle of mass 
m moving along the x-axis. The "state" of that simple system at time t 
can be represented by the ordered pair [x1,p1 I. the position and momentum 
of the particle at time t. Now, it is well known that in order to calculate 
the particle's state at any time t>to, given the state at time to, it is 
necessary to specify the force function, F'(x,p;t). But the ultimate purpose 
of this force function is to specify the "state at time t + dt given the state 
at time t," namely 

[xt+dt. Pt+dt I Xt, Ptl = [x,+ (ptim)dt, Pt+ FCxt.Pt;t)dt}. (2.4-13) 
Once this "conditional state" has been specified ,  the mathematical 
machinery of integral calculus may then be used to deduce an explicit 
formula for [x1,p1 I xo; poJ for any t >to. Of course, in the case of a Markov 
process, it is not generally possible to specify with certainty the value of 
X(t+dt) given the value of X(t). The most we can do toward that end is to 
specify the probability distribution for X(t+dt) given the value of X(t). 
And that is precisely what the propagator density function [1 does [recall 
the definitions (2.4-l> and (2.4-2> 1. 

, 
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Equation (2.4-13) also makes it clear that our freedom to specify the 
form of a particle's state at time t+dt given its state at time t is not 
unlimited; because, even though we have considerable latitude in 
specifying the form of the force function F'(x,p;t), that function can be used 
in the conditional state formula (2.4-13) in only a very particular way. 
Similarly, for a Markov process we do not have unlimited freedom to 
invent propagat<lr density functions U(( I dt; x,t). We must make sure 
that any such function satisfies conditions (2.4-5) - (2.4-8), of which the 
last is especially restrictive. And when those four conditions are 
supplemented by even rather modest additional requirements, the form 
of n can become surprisingly rigid. In Chapters 3 and 4, we shall present 
two different sets of"reasonable additional requirements" on n that lead 
to two particularly interesting and useful classes of Markov processes. 
More specifically, in Chapter 3 we shall derive the functional form that 
ll{( 1 dt; x,t) must have if the random variable 2(dt; x,t) is to have the 
character of a well behaved infinitesimal; this will give rise to the class of 
so-called continuous Markov processes. And then in Chapter 4 we shall 
derive the functional form that ll(( I dt; x,t) must have if the random 
variable Z(dt; x,t) is to be usually zero but occasionally finite; this will give 
rise to the class of so-called jump Markov processes. In the present 
chapter we shall develop some general results, involving either the 
propagator density function ll(( I dt; x,t) or the propagator moment 
functions {Bn(x,t)}, that will be applicable to both of those classes of 
Markov processes. 

2.5 THE KRAMERS-MOYAL EQUATIONS 

Equation (2.4-12) is essentially an infinite order integral equation for 
the Markov state density function P- infinite because Eq. (2.4-lld) 
evidently requires n to be infmitely large. That equation is evidently 
completely determined if the propagator density function n is specified. 
Now we shall derive two infinite order differential equations for P, which 
are likewise completely determined if n is specified. These two infinite 
order differential equations are called the Kramers-Moyal equations, and 
they, like Eq. (2.4-12), are consequences of the Chapman-Kolmogorov 
equation; in particular, the "forward" Kramers-Moyal equation follows 
from Eq. (2.2-5a), and the "backward" Kramers-Moyal equation follows 
from Eq. (2.2-5b). 

... 
.. :c 
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The derivation of the forward Kramers-Moyal equation starts by 
observing that if we define the function {by 

/{x) e P(x+(,t+6tlx,t)P(x,tlxO' t0), 

then the integrand of Eq. (2.2-5a) can be written ft.x-(). Assuming {to be 

infinitely differentiable, we have from Taylor's theorem that 

00 ( -()n il 
f{x-f) = /(x) + L � ,_n /(x). 

n==l v.o. 
Substituting this for the integrand in Eq. (2.2-5a), we get 

P(x,t+6tJx0,tJ 
= I � .. d( P(x+(,t+6tJx,t)P(x,tlx0,t0) 

+ i (-l)
n !.-[I"" d((nP(x+E,t+6tlx,t)P(x,tlx0,tJ \ • 

n' " n -oo n=l · u% 

where we have assumed that the order in which the n-summation
. 
and 

(-integration are performed is not important. The first term on �he nght, 

because of Eq. (2.2-2), integrates to P(x,t I xo,to). Subtractmg that 

quantity from both sides and dividing by 6t gives 

{P(.x,t+6tlx0,tJ -P(x,tlx0,t0)11 6t 

=I <-1)n !._ [ f�J"" d((nP(x+(,t+6tlx,t)}P(x,tlx0,t0) } . 
n! ,._n l 6t -oo n=l """ 

Now taking the limit 6t-O, and noting that 

lim � J"" d�(n P(x+E,t+6tlx,t) O.t-+0 6t -oo 

= � J 00 d�(n P(x+�,t+dtlx,t) 
dt -oo 

= � J "" d�(n fl((Jdt; x,t) {by (2.4-4)) 
dt _.,. 

• B (x,t), n 
we obtain the equation 

lby (2.4-3b>l 

( 

kippenbe
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a 00 ( -l)n an 
dt P(x,tfx0,tJ = 2:: -1- � [Bn(x,t)P(x,tfx0,tJJ . (2.5-1) 

n"' 1 n. lh 
This is the forward Kramers-Moyal e quation. If all the functions 
Bn(x,t) are known -i.e., if all the propagator moments ( En(dt; .x,t)} are 
known and have the analytical form assumed in Eqs. (2.4-3) -then the 
forward Kramers-Moyal equation (2.5-1) constitutes a self-contained 
t-evolution equation for P(x,t I xo,to) for fixed values of xo and to. 

The derivation of the backward Kramers-Moyal equation starts by 
observing that if we define the function h by 

h(.x0) • P(x,tlx0,t0+6tJ. 
then the first factor in the integrand of Eq. (2.2-5b) can be written as 
h( .xo+�). Assuming h to be infinitely differentiable, we have from 
Taylor's theorem that 

00 �
n an 

h(xo + � = h(xo> + 2:: I � h(xo> . n;l n. axo 
Substituting this for the first factor in the integrand of Eq. (2.2-5b), we 
get 

P(x,t I x0,t0) 
= J :oo d� P(x, tlx0,t0+6t0)P(x0+�,t0+6t01x0,tJ 

00 1 oo [ an I + 
n�ln! I -ood ��

n 
<b:n P(x,tfxo,to+ruo> P(xo+f,.to+6tolxo,to>. 0 

where again we have assumed that the order of n-summation and 
�-integration can be changed. The first term on the right, because of Eq. 
(2.2-2), integrates to P(x,t I xo,to + 6to). Subtracting that quantity from 
both sides and dividing through by 6t0 gives 

[P(x,t I x0,t0)-P(x,t I xO'tO + 6tJI16t0 

Now taking the limit tato-O, and noting that 
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[by (2.4-3b)J 

we obtain the equation 

a "" 1  an --P(x,tlxO't0) = 2:: 1 Bn(x0,t0)-;; [P(.x,tl.x0,t0) j. (2.5-2) ato n =l n. a.xo 
This is the backward Kramers-Moyal equation. If all the functions 
Bn(x,t) are known - i.e., if all the propagator moments ( En(dt; .x,t)} are 
known and have the analytical form assumed in Eqs. (2.4-3)-then the 
backward Kramers-Moyal equation (2.5-2) constitutes a self-contained 
to-evolution equation for P(x,t I xo,to) for fixed values of x and t. 

It follows from Eq. (2.2-3) that the forward Kramers-Moyal equation 
. (2.5-1), being a t-evolution equation equation for fixed .xo and to, is to be 

solved subject to the initial condition 
P(x,t=t0 1 x0,t0> = S(x-.x0), (2.5-3) 

whereas the backward Kramers-Moyal equation (2.5-2), being a 
to-evolution equation for fixed x and t, is to be solved subject to the final 
condition 

(2.5-4) 

The fact that the Kramers-Moyal equations are infinite order partial 
differential equations obviously makes their solution rather problematic. 
In any event, like the infinite order integral equation (2.4-12), the 
Kramers-Moyal equations show clearly that a determination of the 
Markov state density function P(x,t I .xo,to) requires that the process 
propagator E(d t; x,t) be specified. In the case of the integral equation 
(2.4-12), E(dt; x,t) is specified by giving its density function[](� I d t; x,t); in 
the case of the Kramers-Moyal equations (2.5-1) and (2.5-2), E(dt; x,t) is 
Specified by giving all of its moments (E"(dt; .x,t)} = Bn(x,t)dt. 



I .  ' 

I 
I I I I 

4 
I I 

,, 
! '. ·,ll·i 
I ' I' 

'I �: i I' 
I ![ 

78 2. GENERAL FEATURES OF A MARKOV PROCESS 

It often happens that all these equations for the density function 
P(x,t I xo.to> of X(t) are just too difficult for one to solve, and one would 
gladly settle for a knowledge of the behavior of just a few low order 
moments of X(t), such as its mean, variance and covariance. In Section 
2.7 we shall derive time-evolution equations for these moments in terms 
of the propagator moment functions Bn(x,t). But before doing that, we 
want to explore the possibility of differentiating and integrating a Markov 
process X(t) with respect to it argument t. 

2.6 THE TIME-INTEGRAL OF A MARKOV PROCESS 

In this section we shall consider whether it is possible to sensibly 
define the derivative and integral of a Markov process X{t) with respect to 
t. We shall discover that the time-integral of X(t) can indeed be well 
defined, but that the time-derivative of X(t) does not exist unless X(t) 
happens to be a completely deterministic process. 

Let us consider first the matter of the time-derivative of X(t). By the 
definition (2.4-1) of the process propagator, if X(t) = x then in the next 
infinitesimal time interval dtthe process will change by the amount 

X(t +dt)- X(t) = E(dt; x,t). 
It follows that a typical value of this process increment in time dt will be 

X(t+dt)- X(t) - mean{E(dt; x,t)} ± sdev{E(dt; x,t)}. (2.6-1) 

To estimate this typical value, we are going to assume that the first two 
propagator moment functions 81 and 82, as defined in Eq. (2.4-3b), both 
exist as well-behaved functions. We shall find in Chapters 3 and 4 that 
this is not a very restrictive assumption, as it is valid for nearly all 
Markov processes of practical interest; certainly it is a benign 
assumption for any Markov process for which the Kramers-Moyal 
equations (2.5-1) and (2.5-2) have meaning. Now, by the definition 
(2.4-3a), we have 

and 
mean{E(dt; x,t)} = (E(dt; x,t)) = 81 (x,t) dt + o(dt), 

sdev{S(dt; x,t)} = {<.S"2(dt; x,t)) - (E(dt; x,t))2}112 

= {[82(x,t) dt + o(dt)] - [81(x,t) dt + o(dt)J2}ll2 

= B2112(x,t)(dt) u2 { 1 + o(dt)/dt}l12 + o(dt). 

jill> 
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Substituting these typical values into Eq. (2.6-1), we thus see that if 
X(t) =x then we will typically have 

X(t+dt)- X(t) 
- B1(x,t) dt + o(dt) ± [ B2112(x,t) (dt)112 { 1 + o(dt)/dt } 112 + o(dt) ] . 

Dividing through by dt, we get 

[X(t+dt)- X(t)]ldt 
o(dt) B2

112(x,t) { o(dt) } 112 o(dt) 
- B (x,t) + - ± 1 + - ± - . 

l dt (dt)l/2 dt dt 
(2.6-2) 

Now taking the limit dt-+0, keeping in mind that o(dt)/dt---+0 in that limit, 
we get 

. X(t+dt) _ X(t) { B1(x,t), if B2(x,t)=O; 
hm -

+ 'f B < ) o dt _. 0 dt _ oo, 1 2 x,t � . (2.6-3) 

So we see that the limit on the left, which obviously defines the derivative 
of the process at time t in state x, does not exist except in the special 
circumstance that B2(x,t) =0. We shall discover in Chapters 3 and 4 Lsee 
especially Section 3.3A] that the only circumstance in which B2<x,tl 
vanishes identically is when the process X(t) is a completely 
deterministic process. We thus conclude that a genuinely stochastic 
Markov process does not haue a deriuatiue with respect to time. 

Now let us consider the possibility of defining a time-integral of the 
Markov process X(t). We begin by noting that if the stochastic process 

S(t) s J t X(t') dt' (2.6-4) to 
exists at all, it cannot be a Markou process! This is because S(t) would by 
definition have a derivative with respect to t, namely 

dS(t)ldt = X(t), (2.6-5) 

and this is something that, as we have just demonstrated, a genuinely 
stochastic Markov process does not have. Nevertheless, it may still be 
possible to define S(t) as a viable non-Markovian process. 

So, how might we define the process S(t) which we have denoted 
symbolically by Eqs. (2.6-4) and (2.6-5)? If X(t) in those representations 
were a sure function oft, then S(t) would of course be that sure function 
for which 


