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58 1. RANDOM VARIABLETHEORY

So the corresponding F; functions in Eqgs. (1.8-14) are
8
F s = [0 Q,(s)ds’ = 1 — exp(—s/2a%),

. 9 ) e 8
F o) = [ @0 |9d0" =~
Now we are in a position to make use of Eqs. (1.8-15). Specifically, letting
ri and rg be two independent unit uniform random numbers, we first set
Fi1(s)=r; and solve for s, and we then set Fa(0;s)=r; and solve for 6. The
results, after replacing r; by the equally serviceable unit uniform random
number 1 —ry, are

g= c[21n(1lr1)]“2, 6 = 2nr,. (1.8-16a)
Then taking

X, =m+ s cosb, x=m+ ssind, (1.8-16b)

in accordance with the formulas relating X, and X3 to S and @, we finally
obtain the desired simultaneous sample values x; and xz of the
statistically independent normal random variables X, and X3. So,
although we cannot analytically transform a single unit uniform random
number r into a sample value x of N(m,e?), Eqgs. (1.8-16) provide a simple
recipe for analytically transforming a statistically independent pair of
unit uniform random numbers r; and ra into a statistically independent
pairof sample values x; and x9 of N(m,a®). We shall find frequent use for
the generating algorithm (1.8-16) in later chapters of this book.

_9.

GENERAL FEATURES OF A MARKOV
PROCESS

_ In this chapter we shall use the concepts of random variable theory
set forth in Chapter 1 to define a Markov process and broadly frame its
. fundamental properties. This will involve introducing the key functions
that are used to describe Markov processes, as well as deriving some
‘general equations which those functions must obey. We shall quickly
 discover that any substantive characterization of a Markov process
 requires that we specify the form of what is called the propagator density
 function. In Chapters 3 and 4 we shall consider two different ways of
specifying that critical function, which specifications lead to the two
‘ principal classes of Markov processes called “continuous™ and “jump.” In
the present chapter we shall see how the propagator density function
comes to play its pivotal role in Markov process theory, and we shall
develop that theory as fully as we can without committing ourselves to a
specific form for the propagator density function.

2.1 THE MARKOV STATE DENSITY FUNCTION

We consider a time-evolving or “dynamical” system whose possible
states can be represented by points on the real axis, and we let

X(t) = the state point, or state, of thesystem at time ¢t. (2.1.1)
‘We shall assume that the value of X at some initial time £ is fixed,
' Xty = x, (2.1-2)

bbut that X(¢) for any t>¢y can be predicted only probabilistically; more
pecifically, we assume that X(¢) for any given ¢t> ¢y is a random variable,
88 defined in Section 1.2. Since it makes sense to inquire about the state
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60 2. GENERAL FEATURES OF A MARKOV PROCESS

of the system at successive instants ¢y, ¢y, ..., t,, Where to<¢; << ... <t,,
then we can ascribe to the corresponding n random variables X{(¢;), X(¢3),
... X(ta) ajoint density function P,'V, which is defined as follows:

(1) 5 A o0
P x ot ix ot x| xgt)de dx  edx

= Prob{ X(£)€lx,x;+dx) for i=1,2,..,n,
given that X(¢)) =xg, with fgs¢, s ... <¢ }. (2.1-3)

If all these assumptions are satisfied, then we say that X(¢) is a
stochastic process.

It is evident that a stochastic process X(¢) has infinitely many joint
density functions P,'", correspondingto n=1, 2, .... And associated with
each of these joint density functions is a plethora of subordinate density
functions; for example,

(y+1) L. .
Pn by (xn,tn, SRE I 1"j+ llx}..t}, .

Xt Xguto)s

is defined to be the joint density function of the n—j random variables
X(t; 1) ..., X(¢,) given the j+ 1 conditions X(¢g)=xo, X(t})le, “oes
X(tj)=xj. Notice that the subscript on the density function P, refers to
the number of (x,t) pairs to the left of the “given” bar, while the
superscript refers to the number of (x,¢) pairs to the right of the “given”
bar; thus, Pk‘ﬁ is a k-variate joint density function with j conditionings.

It is always possible to calculate the function P,_,''? from the
function P,‘? by simply integrating the latter over any one of the
variables xy, ..., x,. However, it is not in general possible to deduce the
function P, 'V from the function P,'!’. This “open-ended” nature of the
density functions for a general stochastic process usually makes any
substantive analysis extremely difficult. But we shall be concerned here
with only a very restricted subclass of stochastic processes, namely those
that have the “past-forgetting” property that, forall j=2and ¢, _ <¢,

N r
Pl (x}.,!l [xl L3 1:‘}_ e xl"l’ IO!‘O)

=Pt lx, ot V=Pt lx e ) (2144)
This is called the Markov property, and it says that only the most recent
conditioning matters: Given that X(¢')=x', then our ability to predict X(¢)
for any ¢>¢ will not be enhanced by a knowledge of any values of the
process earlier than ¢. Any stochastic process X{(¢) that has this past-
forgetting property is called a Markovian stochastic process, or more
simply, a Markov process. In what follows it may always be assumed,
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unless explicitly stated otherwise, that the stochastic process X(¢) under
consideration is a Markov process.

The Markov property (2.1-4) breaks the open-endedness of the
hierarchy of joint state density functions in a dramatic way. Forthejoint
density function P,'V we have

Y i
Py gty pty 130ty
_ plD (2) .
—Pl (xl"llxo"o)Pl (xz,t2|xl,tl,xo,to) (by (1.5-9d)}
=t (n (1
"Pn {xl,tllxo,tOJPl (xz,tzlxl.tl). by (2.1-4)]

(n

Hence, writing P;''' = P in accordance with the notation suggested in Eq.

(2.1-4), we have

D —
P2 (x Wyl xgty) = P(x

b |20 ) Ple ot [ xgty) (2.1-5)

2t2
The same kind of reasoningshows that

(1) . ; =
P3 (x,.t :x.,t;x tl|xo.to)—P(x

gl Xplyi X |xg,t.) Plxy,t, | x ) Pyt [ x0.80),

3 t3

and more generally, for any setof times ¢, =tn -1 2+ 2{o,

n

) .. - T
P Tl it sxnt Ixgt) = l IIP( otz _ ) (2.1-6)
1=

So for a Markou process, every conditioned state density function P,'!’
can be written solely in terms of the particular conditioned state density
function P,'"m P, The function P,'!=Pthus becomes the principle focus
of our study, and we shall henceforth refer to it as the Markov state
density function. For future reference, the formal definition of the
Markov state density function is {cf. Eq. (2.1-3))

P(I2,t2 I Il’tl) dxz
= Prob{ X(¢,)€([x,,x, +dx,), given X(¢,) =x, with ¢, =¢ }. (2.1-7)

2.2 THE CHAPMAN-KOLMOGOROV EQUATION

Since P(x;,t; | x1,2)) is a density function with respect to its argument
X2, it must satisfy conditions analogous to Eqs. (1.2-3) and (1.2-4),
namely,
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62 2. GENERALFEATURES OF A MARKOV PROCESS
Pxpty)x)t) = 0, (2.2-1)
| © dx, Pyl e =1. (2.2-2)

Also, if we let t; equal its minimum value ¢, then the condition X(¢))=x
obviously implies that X(t3)=x), or that X(¢y) is the sure variable xi;
hence, by (1.2-7), we have the requirement

P(xy, to=t | x,t}) = 8(xg—x,). (2.2-3)

Of course, the function P would have to satisfy the preceding three
equations even if the process X(¢) were not Markovian. A condition upon
P that arises specifically because of the Markov property may be deduced
as follows: For any three times ¢, < ¢y < ¢3, we have

(1
P1 (xs,lslxl.tl)

s @ ()
—l d:o:ZP2 (x

oty Tptalxt) Iby (1.5-12a)]

ea | = (1) 2
= [ dn, Pyt lx ) PPyt 12y t5,0) by (15-94))

= ‘ :'dxz P: U(xz,tzl x,t) Pl‘ 1’(st.ts | x,t,), [by (2.1-4))

where the last step explicitly invokes the assumed Markovian nature of
X(e). Interchanﬁing the two factors in the last integrand and then
abbreviating P,'" everywhere by P, we obtain what is known as the

Chapman-Kolmogorov e quation:
P(xs,tslxl,tl) = [ _”P(xs,talxz,tzl P(xz,tzlxl.tl)dxz
(t‘stzsta), (2.2-4)

This integral equation, a graphical interpretation of which is given in
Fig. 2-1, is essentially a consistency condition on the Markov state
density function P for any Markov process X(t). As we shall see later, it
severely limits the range of acceptable functional forms of P for any
Markov process.

Because of the initial condition (2.1-2), the quantity Px,t| xg,ty) is of
special importance. As we shall see later, time-evolution equations for
P(x,t| xg.tg) can be derived from two specially phrased versions of the
Chapman-Kolmogorov equation, obtained by relabeling the variables x;
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Figure 2.1. Graphical interpretation of the Chapman-Kolmogorov equation
. 12.2-4). The probability Ptx,.ty|x,.t;)dx; of going from x, at time ¢, to the
. interval [x,.x;+dx;) at time ¢y can always be written as the sum of the
probabilities of this occurring via all possible intervals [x;,x3+dxy) at any
fixed intermediate time ¢&. When the Markov property (2.1.4) holds, the
summand takes the form [Prxq,.tp | x1,¢Mdxa)X{ Pxy.ty | x2,62)dxy|, whence the
. integralequation2.2-4) for the function P.

and ¢; according to the two diagrams in Fig. 2-2. These two “utility”
ersions of the Chapman-Kolmogorov equation are as follows:

P+t xpt) = [:dt Plxit+0t| x—&0) Plx— &t xt )
(ty<t<t+Aan); (2.2-5a)

Px.tlzgty = | ~_dt Ptz iyt Atg) Plxg+ity+ Btgl 2ty
(ty <t +At <D, (2.2.5b)

‘fquation (2.2-5a) will give rise to equations that govern the x and ¢
behavior of P(x,t| x,tp) for fixed xo and tg, the so-called “forward” time-
evolution equations. And Eq. (2.2-5b) will give rise to equations that
govern the xp and ¢y behavior of P(x,¢t | x¢,to) for fixed x and ¢, the so-called
“backward" time-evolution equations. Notice that At and At here need
not be infinitesimally small.
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time
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2.3 FUNCTIONS OF STATE AND THEIR AVERAGES

time
f
Any univariate function g that takes a value g(x) for any possible

. gystem state x can be regarded as a function of state. We can also think

t+ At

“the function g of the random variable X(¢)” [see the discussion of Eqs.
(2.3-1)

§ i (1.6-1)). The conditional state average,
° dxg(x) P(x, t|x', &) (¢'<¥),

A @X()) X(t)=x') = [

¥ may accordingly be viewed either as (i) the average of the function g with
. Tespect to the random variable X(¢) given that X(¢')=x', or as (ii) the
‘mean of the random variable g(X(¢)) given that X(¢')==x' [see the

dt

I
'
'
¢
¢
i
Il
)
¢
]
’
,
)
1
1
1
1
[ -
: g
: o)
' /
' ’
. ) dt
;

# discussion following Eq. (1.6-12)).
i - Similarly, any bivariate function g can be used to define a two-time
function of state g(X(¢;),X(¢9)) for ¢; s¢5, and its average or mean, given

fX(t')=x' for some t'<¢y, is
b xl.tllx W)

£ Ny — [ o ‘D
@t )X Xt =x) = |~ dx [ 7 dx, g0x ) PJVx

§ With the Markov simplification (2.1-5), this is

(g(X(e ), Xt 0| X(£)=x")
— ] :udxlj mmda:2 glx,x,) P(xz,tzlxl,tl)P(xl,tl |x",£)
(t’stlst2) (2.3-2)

x
0
0

(a) (b)
Figure 2-2. Showing the initial, intermedi
. b ediate and final state variab!
two special Chapman.Kolmogorov equations (2.2.5a) and 12.2~5b:-. AR
A_nother version of the Chapman-Kolmogorov equation that
?c;:asmnally proves useful for determining Px,¢| xo,tp) is obtained as
ollows: By an obvious extension of Eq. (1.5-12a), we have for any set of

‘lf t' in Eqs. (2.3-1) and (2.3-2) is taken to be the initial time ¢g, then we
shall simply omit the conditioning notation; thus, the initially

[conditioned ave rages will be denoted by

@X(0)| X(t)=x)) = QX))
[ 7 degto Patlzgty (ty=n, (23:3)

times {H<t)<-.-<t,,
P(x b Ixy,t)= j_: dx_ II : dx, P’:U(xn,tn; X X,
Substituting from Eq. (2.1-6) on the right then gives the result =
) and
(@(X(e,). Xte, )| X(¢)=x)) = (g(X(¢ ), X(¢,)

Pix .t 1xe) = [ ) F
Xt lxgt) = {_mdxl ~~-I_wdxn_l []lP(x',tilxl_i,t
=
(tg<t, <t). (2.3-4)

(t0<tl<... <tn). (2.2-6)

This equation, which evidentl i
y y reduces to Eq. (2.2-4) for n=2, wil] be
referred to as the compounded Chapma n-Kolmogorov equation.



—

4 i

66 2. GENERAL FEATURES OF A MARKOV PROCESS

The most important applications of the univariate average (2.3-3) are
to the two functions g(x) =x and g(x)=x2. This is because [see Egs. (1.3-6)
and (1.3-8)] the initially conditioned mean and variance of the process
X(¢) are givenrespectively by

mean{X(0)} = (X(0) (¢,,s¢) (2.3-5)

and
var{X()} = (X%0) — (X)?  (t,=0). (2.3-6)
And the initially conditioned stand ard deviation of X(¢) is given by
sdev{X(t)} = [var{ X% = [(X40) — (XO2]V2  (¢,s0). (2.3-T)

Given that X(¢g) =xg, then at any time ¢>¢; we can “usually expect” to
find X(¢) to be within roughly sdev{X(#}} of the value (X(¢)).

The most important application of the bivariate average (2.3-4) is to
the function g(x;,x3)=x)x. This is because [see Eq. (1.5-17)] the
covariance of X(¢)) and X(¢tp) for tg=<t, <t,, given that X(¢g)=1xg, is
defined by

coviX(e)), X(t,)} = (X(¢)X(ty)) — (X)X X(t)) (tys¢t <t)). (23-8)

As shown in Eq. (1.6-18), cov{ X(¢,), X(¢2)} is always bounded in absolute
value by sdev{X(t1)}-sdev{X(tz)}. If cov{X(¢,),X(¢tp)} assumes its positive
bound then X(¢;) and X(¢;) are said to be maximally correlated, while if
cov{ X(¢}), X(tp)} assumes its negative bound then X(¢,) and X(¢;) are said
to be maximally anti-correlated. If cov{X(¢)),X(¢2)}=0, then X(¢,) and
X(¢) are said to be uncorrelated. One way in which X(¢,) and X(¢;) can be
uncorrelated is for them to be statistically independent, in the sense that
Plxy,ty | x,t1) is independent of x; (and hence also independent of ¢);
because in that case we have from Eq. (2.3-4),

(XepXt) = [ 7 dx |7 dx, 2z, Playty 2,0 ) Pla,t, V2 tg)

= I:,dxl I_:dxz xlxzp(xz,tz)f’(xl.tl)

= [ del x P(xl,tl) I_md:c2 sz(xz,tZ)

= (X(e ) (X(2)).

So if X(¢;) and X(¢y) are statistically independent, then cov{X(tl).X(tz)}
vanishes, implying by definition that X(¢;) and X(¢;) are uncorrelated.
But notice that X(¢)) and X(¢3) could be uncorrelated (i.e., have a
vanishing covariance) without being statistically independent.
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It is an instructive exercise to show directly for a Markov process that
cov{ X(¢,). X(t,=¢,)} = var{X(¢)}, (2.3-9)
as we should expect on the basis of Eq. (1.5-18). We have from Eq. (2.3-4),

e pXe,=e ) = [ 7 dw [T de, 1m, Pty = 12 Pt gt
N l:,d"l l :.,d"z x %, 8(x,=x)) Px,t, |2 tg)
- 2
= [_.,d"l x % Pyt | xgtg) = (X)),

where the second equality follows from Eq. (2.2-3). Substituting this
result into Eq. (2.3-8) with¢y =¢;, and then recalling the definition of the
variance in Eq. (2.3-6), we obtainEq. (2.3-9).

2.4 THE MARKOV PROPAGATOR

Suppose that our system — our Markov process — is in the state x at

' time ¢, i.e., suppose that X(¢)=x. Then by the inﬁnitesimally lat_er time
 ¢+dt, the system will have evolved to some new state that is displaced

from x by the amount

Ede; x.t) = X(¢+de) — X&), given X(8)=x. (2.4-1)

Notice that the condition “X(¢)=x" in this definition affects the first term
on the right side as well as the second. This state displacement Z(d¢; x,¢)
from state x during time [¢.¢+d¢) is clearly a random variable; we shall
call it the propagator of the process X(¢). Like any random variable, the
propagator is completely specified by its density function. We shall

i denote the density function of Z(d¢, x,¢) by 1I(€ | d¢; x,¢), and refer to it as

. the propagator density function; thus we have, by definition,
IIE | dg; x,0) d§ = Prob{ Z(ds x.0€lE,E+d8) ). (2.4-2)

Evidently, the propagator Z(d¢; x,¢) tells us where the process, in state
x at time ¢, will be at the infinitesimally later time ¢+d¢; specifically, the
process will bein the state x+ =(d¢; x,¢). Here it is perhaps appropriate to
remark that we are regarding d¢as a real variable whose allowed range is
the open interval (0,e), where ¢ is positive but “arbitrarily close to zero.”
Although we shall always take £<1, so that (d#)? is negligibly small
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compared tod¢, the precise value of £ will depend upon the situation. For
example, if we are considering a specific differentiable function A of the
variable ¢, then we can always find a positive number ¢ (which may
depend upon ¢) such that h(t+det) can for most purposes be equated to
h(e)+h'(0)d¢ for all dt in (0,e). In our work here we shall never need to
know the actual value of €, but merely that such a value exists.

So the random variable =(d¢; x,t), and its associated density function
IT(¢ | d¢; x,t), depend parametrically on the three real variables d¢, x and .
We have chosen to notationally separate the parameter d¢ from the
parameters x and ¢ because, as we shall see later, it is possible for
[1(& | d¢; x,¢) to be explicitly independent of x or ¢, but not of d¢. In fact, it
usually turns out that the moments of =(d¢; x,t) have the analytical
structure

SYdE x,0) = ] ® dg&" Meldex,0 = B (x0dt + old)
(h=12,.), (2.4-3a)

where B(x,t), By(x,t), ... are all well-behaved functions of x and ¢, and otd¢)
denotes terms that go to zero with dt faster than d¢:

odt)dt - 0 as dt—»0.

Equation (2.4-3a) essentially defines the functions B,(x,t), as can be seen
a little more clearly by dividing through by d¢t and then noting that
o{d¢t)/dt can be made arbitrarily small by taking d¢ small enough; in other
words, for vanishingly small d¢ we have

1 1 (=
B = — (="(d¢ = - e -
(x,0) i E(de; x,0) % l _”dLE T1E | de; x,¢0)
(n=12,..). (2.4-3b)

We shall call B,(x,t) the nth propagator moment function of the
Markov process X(¢). Much of what follows in this chapter will be devoted
to deriving some fundamental equations involving these propagator
moment functions. Obviously, those equations will have meaning only if
the propagator density function [I(§|d¢; x,t) is such that the above
definition of B,(x,t) truly makes sense. As we shall discover in the
following chapters, the propagator moment functions B,(x.t) are nearly
always well defined for Markov processes of practical interest.

Notice that the propagator =(d¢; x,¢), its density function [1(& | d¢; x,¢)
and its moments (="(d¢; x,t)) all need be specified only to lowest order in
d¢. This is because we can always choose the allowed range (0.¢) of the
variable d¢ to be arbitrarily small.
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There is a very important connection between the propagator density
function /T and the Markov state density function P. To expose that
connection, we observe that the definition (2.1-7) of Pimplies that, for d¢
a positive infinitesimal,

P(x+§,e+de | x,0)dE
= Prob{ X(¢+dt)€[x+&, x+§+dE) given that X(&) =x}
= Prob{ [X(¢+det)~ x]€{§,E +dE) given that X(t)=x)
= Prob{ [ X(¢ +de)— X(e) |€[,§ +dE) given that X(¢)=x}
= Prob{ Z(dt; x,00€[£,§+dO) },

where the last equality follows from the definition (2.4-1) of the
8 propagator Z(dt: x,t). Hence, by the definition (2.4-2) of the propagator
& density function {1(§ | d¢; x,¢), we conclude that [see Fig. 2-3)|

1€ 1 de; x,0) = Pix+&,t+de] x,0). (2.4-4)

i So we see that the propagator density function {1(§|d¢; x.¢t) is just the
¢ Markov state density function P(x’,t'| x,t) in which x' exceeds x by the
£ amount §, while ¢’ exceeds ¢ by the infinitestmal amount d¢. Notice that §,
i unlike d¢, is not assumed to be an infinitesimal; § is an unrestricted real

variable.

time

g r-axis at time ¢+dt

3= x-axisattime ¢ 4

Figure 2.3. tllustrating the transition of the process from state x at time
tto the interval [x+ &, x + £+d¢) at time ¢+d¢. The infinitesimal nature
of d¢ allows us to write the probability for this transition to occur as
Pix+ & t+de| x,6)dE. And because d¢ is likewise an infinitesimal, we can
also express this transition probability as I7(£ | d¢; x,t)d§.
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Because I1(§ | d¢; x,¢) is a density function with respect to its argument

&, then it must satisfy the two conditions

neElde x,e) = 0 (2.4-5)
and

I_:da mElde x,0 = 1. (2.4-6)

Furthermore, since it is clear from the definition (2.4-1) that =(d¢=0; x,¢)
must be the sure number zero, then we must havelsee (1.2-7)]

IM(&1de=0;x,6) = 5. (2.4-7

In addition to these three basic conditions on the propagator density
function /I, there is one more important requirement that follows from
the fundamental relation (2.4-4) and the Chapman-Kolmogorov equation
(2.2-4). According to the latter equation, P must satisfy for any A¢> 0 and
any value of a between 0 and 1,

P(x+&¢t+At| x,0)

= ] ” dE, Plx+&E+A|x+E ,t+aA) Plx+§,,t+abtlx,0

= ] :dzl P(x+& +8=¢, t+aBt+(l ~a)At|x+E t+0aAp)
X P(x+&,t+ alt|x,0).

Then taking At to be the infinitesimal d¢, it follows on substituting from
Eq. (2.4-4) that

MENdE 50 = | 7 dg ME-& 11 ~a)dt; x+,.t+adD I, | ads; x,0).

; (2.4-8)

This condition, which must hold to lowest order in d¢ for all a between 0

and 1, will be called the Chapman-Kolmogorov condition on the

propagator density function. It and conditions (2.4-5) — (2.4-7) serve to

restrict the possible functional forms that can be ascribed to the
propagator density function /7(§ | d¢; x,¢).

We can gain a little more insight into the Chapman.-Kolmogorov

condition (2.4-8) by writing it in the equivalent form
e e x,0 = ] " ag, [ 7 dg, 11, |adt; .0

XIKE, (1 —a)dt x+ & ,t+ad) 6(E- &, ~ &),
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from which Eq. (2.4-8) readily follows by integrating over & with the help
of the delta function. Viewing this last equation in light of the RVT
theorem (1.6-4), we see that it implies the following functional relation
among three random variables corresponding to &, &; and &;:

2de; X(0),0) = Zladt; X(0),0) + E((1 —a)ds; X(0) +E(ade; X(0),0), t+ ade).
(2.4-9)

Although this relation may at first glance appear to be very complicated,
it is merely the statement that {the change in the process over (¢,¢+dt)}
must be equal to {the change in the process over (¢,¢+adt)} plus {the
subsequent change in the process over (¢t+ad¢,t+d¢)}). The random
variable relation (2.4-9), which again must hold to lowest order in d¢ for
all a between 0 and 1, is entirely equivalent to the density function
relation (2.4-8). Either may be referred to as the “Chapman-Kolmogorov
condition.”

The importance of the propagator density function I1 lies in the fact
that it completely determines the Markov state density function P, from
which of course everything knowable about the (Markov) process X(¢) can
be computed. This fundamental fact is not readily apparent from Eq.
(2.4-4), which shows rather that a knowledge of P implies a knowledge of
IT; however, it can be proved by reasoning as follows.

In the compounded Chapman-Kolmogorov equation (2.2-6), let ¢,=¢
be any value greater that ¢y, and let the points ¢).t2,...,t, — divide the
interval 1¢g,t] into n subintervals of equal length (¢~¢y)/n. Further,
change the integration variables in that equation according to

Ii =3 {i =x-x_, (i=1,.,n-1).

Notice that the Jacobian determinant of this transformation has zeros
everywhere on one side of its main diagonal, and ones everywhere on its
main diagonal, so dx;-+dx,_;=d&;d§,_,. Notice also that this
transformation implies that

r=x_ &=l ,+ g JHE= =+  + L+

Finally, relabel x,=x, and define {, mx—x,_,. With all these changes,
the compounded Chapman-Kolmogorov equation (2.2-6) becomes

@©

Platlzygty= |~ de | .,

a

x .1"1 P _

i=1

)

) (2.410)

1+E,. t_, +(t—to)/n Jxl._l,t‘,

wherein



— ———— lper I

72 2. GENERAL FEATURES OF A MARKOV PROCESS

L;=t_,+ (t—ty)in (i=1,.,n—1), (2.4-11a)
TRl T M N kD (i=1,..,n—=1), (2.4-11b)
gn o e S ---‘53—1- (2.4-11c)

We emphasize that Eq. (2.4-10) is merel the com

Kolmogqrov equation (2.2-6) in which thg intermedli)z(:ren(t!ier:iieg}tlla Ptf‘nan
t,,._l divide the interval (t—tg) evenly, and the integrations are, t:i(en’
w1tb respect to the state displacement variables &; instead of the state
variables x;. Figure 2-4 schematizes the relations among the variables in

(2.4-11d)

In that case, the P-factors in the integrand of Eq. (2.4-10) all become
II-factors by virtue of Eq.(2.4-4), and we obtain

(t—tg)/n = dt, aninfinitesimal.

X=xy —— time

R A e . ﬁ

~» x-axisattime ¢ }

=3  x-axis at time t, 4+

}'_ {2 | dLB
—3 x-axisat time P S
X,
2 )
— & | d¢ (= to)4
Jr =3  x.axis at time 4 ol - W

*o

-3  x.axis at time t ‘]_

Figure 2.4. lllustrating the relat

ions among the variables in Eq. (2 4.
the case n=4. Notice that §,, & d 10) for

' 2 and &; are integration variables, while & is
stmply_deﬁned tp be the difference between tx—~xo) and (& +&, + &) ’Ia“his
figure is a graphlc.al encapsuliation of relations (2.4.11a) 24-11¢) in which
for the sake of clarity, al} &'s have been taken positive. '
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a o o2
Plx,t|xt)) = l_,,df‘l"' I _,,,d;"n—l [ INg, |dex,_ ¢, ), (2.4-12)

=1

" where now all four of Egs. (2.4-11) apply. This result shows that if we

spacify /I(£]dt; x',t') as a function of & for all x’, all t‘Elt.o,t), and all
infinitesimally small d¢, then P(x,¢ | xo,to) is uniquely determined for all x.

Although Eq. (2.4-12) gives proof to the assertion that the propagator
density function /T completely determines the Markov state density
function P, that formula would not seem to afford a universally simple
means of actually computing P from 1. Notice in particular the
potentially complicated dependence of the integrand in Eq. (2.4-.12) on
the integration variables through the functions x: defined in Eq.
(2.4-11b). In the next section we shall consider a different way of using
the Chapman-Kolmogorov equation and the fundamental relation (2.4-4)
to compute P from a knowledge of /7. But first it might be appropriate to
make some general observations about the rationale for any method that
seeks to calculate P from /1.

To say that we must specify 7 in order to determine P is, because of
Eq. (2.4-4), to say that we must specify Plx',t'| x,¢) for ¢' infinitesimally
larger than ¢ in order to calculate P{x',¢t’ | x,¢) for any ¢’ larger than ¢. This
may seem like circular reasoning, but it does have an obvious precedent
in mathematical physics in the elementary problem of a particle of mass

¥ m moving along the x-axis. The “state” of that simple system at time ¢
. can be represented by the ordered pair [x;,p,l, the position and momentum

of the particle at time &. Now, it is well known that in order to calculate
the particle’s state at any time ¢>¢y, given the state at time ¢, it is

® " necessary to specify the force function, F(x,p;#). But the ultimate purpose

E  of this force function is to specify the “state at time ¢t+d¢ given the state
. at time ¢,” namely

(x¢ +des Pe+ae | 2, P} = (e +(pd m)de, pe + Flx, pi)dt).  (2.4-13)

E  Once this “conditional state” has been specified, the mathematical

machinery of integral calculus may then be used to deduce an explicit
formula for [x,,p; | 9, pol for any ¢ >ty5. Of course, in the case of a Markov

{. process, it is not generally possible to specify with certainty the value of

X(t+dt) given the value of X(¢). The most we can do toward that end is to

b specify the probability distribution for X(¢+dt) given the value of Xi¢).
. And thatis precisely what the propagator density function {7 does [recall

the definitions (2.4-1) and (2.4-2)).
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Equation (2.4-13) also makes it clear that our freedom to specify the
form of a particle’s state at time ¢+d¢ given its state at time ¢ is not
unlimited; because, even though we have considerable latitude in
specifying the form of the force function F(x,p;¢), that function can be used
in the conditional state formula (2.4-13) in only a very particular way.
Similarly, for a Markov process we do not have unlimited freedom to
invent propagatur density functions I7(]|d¢; x,t). We must make sure
that any such function satisfies conditions (2.4-5) - (2.4-8), of which the
last is especially restrictive. And when those four conditions are
supplemented by even rather modest additional requirements, the form
of IT can become sutprisingly rigid. In Chapters 3 and 4, we shall present
two different sets of “reasonable additional requirements” on IT that lead
to two particularly interesting and useful classes of Markov processes.
More specifically, in Chapter 3 we shall derive the functional form that
IT(€ | d¢; x,6) must have if the random variable 2(d¢; x,¢) is to have the
character of a well behaved infinitesimal; thiswill give rise to the class of
so-called continuous Markov processes. And then in Chapter 4 we shall
derive the functional form that [7(¢]d¢; x,t) must have if the random
variable Z(d¢; x,¢) is to be usually zero but occasionally finite, this will give
rise to the class of so-called jump Markov processes. In the present
chapter we shall develop some general results, involving either the
propagator density function [7(§|d¢; x,¢) or the propagator moment
functions {Ba(x,?)}, that will be applicable to both of those classes of
Markov processes.

2.5 THE KRAMERS-MOYAL EQUATIONS

Equation (2.4-12) is essentially an infinite order integral equation for
the Markov state density function P — infinite because Eq. (2.4-11d)
evidently requires n to be infmitely large. That equation is evidently
completely determined if the propagator density function /7 is specified.
Now we shall derive two infinite order differential equations for P, which
are likewise completely determined if /T is specified. These two infinite
order differential equations are called the Kramers-Moyal equations, and
they, like Eq. (2.4-12), are consequences of the Chapman-Kolmogorov
equation; in particular, the “forward” Kramers-Moyal equation follows
from Eq. (2.2-5a), and the “backward” Kramers-Moyal equation follows
from Eq. (2.2-5b).
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The derivation of the forward Kramers-Moyal equation starts by
observing that if we define the function fby

fix) = P(x + &+ At| x,t) Plx,tlx L),

then the integrand of Eq. (2.2-5a) can be written flx—§). Assuming fto be
infinitely differentiable, we have from Taylor's theorem that
® (- E,)n at
— — flx).
n!

—9=fRx)+
ﬂx«‘JﬂIn "

=1
Substituting this for the integrand in Eq. (2.2-5a), we get
Pex,t+At|x gt )
= [ s d§ Pix+§ ¢+ At x,0) Plx,t|xt )
(-n* &
on

nl o ax

[ dee” Perberatlxd Pty

-

o0
+ 2
a=1

4 b where we have assumed that the order in which the n-summatlon'and
3 ¢-integration are performed is not important. The first Eerm on t.he right,
@ because of Eq. (2.2-2), integrates to P(x,t| xg,t0). Subtracting that
1 quantity from both sides and dividing by At gives

iP(x,e+ Atlxo,to) - P(x,t|x ol at

t
0!
(-1)°

n!

5 L ' 7 degn P(x+i,.t+At|x,tJ} P(x.tlxo-fo’|‘
B n2=‘1 " Stkies

Now taking the limit A¢—0, and noting that

N N
lim —[ dEE™ Px+ 504+ At x,0)
at+p OtT -

1 ® o

= P(x+&¢+ -
dtl_mdi,i, (x+§&e+delx,e)
l_

= ]"’dga"maidt;x,n by (2.4-4)]

de
= B (x.0), Iby (2.4-3b)]

we obtain the equation


kippenbe
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a @ (_l)n
= P(x.tlxo,to) = nE

= n

- [B (50 Pt xgtg | (@25-1)

This is the forward Kramers-Moyal equation. If all the functions
Bp(x,t) are known — i.e,, if all the propagator moments (°(d¢; x,¢)) are
known and have the analytlcal form assumed in Egs. (2.4-3) — then the
forward Kramers-Moyal equation (2.5-1) constitutes a self-contained
t-evolution equation for P(x,t| xq.tg) for fixed values of xg and ¢q.

The derivation of the backward Kramers-Moyal equation starts by
observing that if we define the function k by

hix) = P(x,t| xo.t0+Ato).

then the first factor in the integrand of Eq. (2.2-5b) can be written as
h(xg+§&). Assuming h to be infinitely differentiable, we have from
Taylor's theorem that
¢ 7
h(x +& = h(xy) + Z = — hixg).
n-l ho

Subs tituting this for the first factor in the integrand of Eq. (2.2-5b), we
get
Pix,t|xt)

= ]_wd{ Px,t|xt + Aty Plx +&¢t +Atg| xo.t o)
1l = ol

+,.E—1:’ [_Udiﬁ = Px,t|xopt o+ Atg) | Plxg+ 8,2+ At | x b o),
. 0

where again we have assumed that the order of n-summation and
¢-integration can be changed. The first term on the right, because of Eq.
(2.2-2), integrates to P(x,t|xq,tg+ Atg). Subtracting that quantity from
both sides and dividing through by A¢g gives

[P(x,t! X gbol — P(x,t| xytyt Atl/ At

N ‘; 1[1 "
~Z gl l dEE" Plx +&,80+ Aty x ) | — Plx,t| zgpt o+ At).

Now takingthe limit Atg—0, and noting that

2.5 THE KRAMERS-MOYAL EQUATIONS 7

1 i ®
lim — [ " 488" Pix +Et,+ Aty | gty

Ato—-o
1
-5 [ PREIRRINENN
l n
.3 2.4-4)
. [ 7 agemeldtgxygty Dby @4-4)
= Bn{xo’to” [by (2.4-3b)]

§ we obtain the equation

a a
e Plxptlxpt) = 2 — 5 Bn(xo,

’l
= = |Ptlzgty]. @52
0 n=1 0

; '_ This is the backward Kramers -Moyal equation. If all the functions

B,(x,t) are known — i.e, if all the propagator moments (="(d¢; x,t)) are
known and have the analytical form assumed in Egs. (2.4-3) — then the

i backward Kramers -Moyal equation (2.5-2) constitutes a self-contained
@' ¢g-evolution equation for P(x,t | xq,tq) for fixed values of x and ¢.

It follows from Eq. (2.2-3) that the forward Kramers-Moyal equation

: (2.5-1), being a t-evolution equation equation for fixed xo and ¢g, is to be
i solved subject to the initial condition

P(xt= to |xpty) = 8lx=x)), (2.5-3)

whereas the backward Kramers -Moyal equation (2.5-2), being a

£ Co-evolution equation for fixed x and ¢, is to be solved subject to the final

condition
Plx,t| xg,ty =) = 8(x—x,). (2.5-4)

The fact that the Kramers -Moyal equations are infinite order partial

{ differential equations obviously makes their solution rather problematic.
. In any event, like the infinite order integral equation (2.4-12), the

Kramers -Moyal equations show clearly that a determination of the
Markov state density function P(x,t]|xq,tg) requires that the process
propagator Z(d¢ x,t) be specified. In the case of the integral equation

! (2.4-12), E(d¢; x,t) is specified by giving its dens ity function I7(§ | d¢; x,?); in

the case of the Kramers-Moyal equations (2.5-1) and (2.5-2), Z(d¢; x,8) is
specified by givingall of its moments (Z*(d¢; x,t)) = Ba(x,t)dt.
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It often happens that all these equations for the density function
P(x,t| xp,t0) of X(¢) are just too difficult for one to solve, and one would
gladly settle for a knowledge of the behavior of just a few low order
moments of X(¢), such as its mean, variance and covariance. In Section
2.7 we shall derive time-evolution equations for these moments in terms
of the propagator moment functions Bp(x,t). But before doing that, we
want to explore the possibility of differentiating and integrating a Markov
process X(¢) with respect to it argument ¢.

2.6 THE TIME-INTEGRAL OF A MARKOV PROCESS

In this section we shall consider whether it is possible to sensibly
define the derivative and integral of a Markov process X{(¢) with respect to
t. We shall discover that the time-integral of X(¢) can indeed be well
defined, but that the time-derivative of X(¢) does not exist unless X(¢)
happens to be a completely deterministic process.

Let us consider first the matter of the time-derivative of X(¢). By the
definition (2.4-1) of the process propagator, if X(¢)=x then in the next
infinitesimal time interval d¢ the process will change by the amount

X(e+de) — X(&) = =(d¢; x.0).
It follows that a typical value of this process increment in time d¢ will be
X(t+de) — X(¢&) ~ mean{Z(d¢; x,t)} * sdev{=(d¢; x,0)}. (2.6-1)

To estimate this typical value, we are going to assume that the first two
propagator moment functions B) and By, as defined in Eq. (2.4-3b), both
exist as well-behaved functions. We shall find in Chapters 3 and 4 that
this is not a very restrictive assumption, as it is valid for nearly all
Markov processes of practical interest; certainly it is a benign
assumption for any Markov process for which the Kramers-Moyal
equations (2.5-1) and (2.5-2) have meaning. Now, by the definition
(2.4.3a), we have

mean{Z(de; x,t)} = (E(d¢; x,0)) = B (x,t)dt + o(de),
and

sdev{=(dt; x,0)} = {(E2(d8; x,0) — (Z(d¢; x,8))2} 12
= {[B,(x,0)d¢t + o(d®)] — | B,(x,0) dt + o(d) P}
= 321/2(,:.,)(&)112 {1 + o(deyde}V2 + o(de).
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Substituting these typical values into Eq. (2.6-1), we thus see that if
X(#)=x then we will typically have

X(t+do) - X(9
2 v2 u2

~ B (x,Adt + oldt) * |32 (x,0) (de) {1 % o(dt)/dt} + o(dt)l.
Dividing through by d¢, we get

[X(¢+de) — X(B))/ de

Bx, 12

o(de) 4+ 2 [ % o(dt)} + o(de) 262)
dt (de)"? dt

d¢
Now taking the limitd¢—0, keeping in mind that o(d¢yd¢-—-0 in that limit,
we get

~ B(x,t) +

lim (2.6-3}

X(e+do — X [ B (x,t), if By(x,H)=0;
dt — 0 de

tw if Bz(x,t)i().

. Sowe see that the limit on the left, which obviously defines the derivative

of the process at time ¢ in state x, does not exist except in the special
circumstance that Ba(x,t)=0. We shall discover in Chapters 3 and 4 [see
especially Section 3.3A| that the only circumstance in which Ba(x.t)
vanishes identically is when the process X(¢) is a completely

‘% deterministic process. We thus conclude that a genuinely stochastic
# Markov process does not have a derivative with respect to time.

Now let us consider the possibility of defining a time-integral of the

i’ Markov process X(¢). We begin by noting that if the stochastic process

S(t) = ] ‘Xyde (2.6-4)
¢
0

3 exists at all, it cannot be a Markov process! This is because S(¢) would by
' -. definition have a derivative with respect to ¢, namely

dS(e)de = X(o), (2.6-5)

i and this is something that, as we have just demonstrated, a genuinely
f stochastic Markov process does not have. Nevertheless, it may still be
. possible to define S(¢) as a viable non-Markovian process.

So, how might we define the process S(¢) which we have denoted

. symbolically by Eqgs. (2.6-4) and (2.6-5)? If X(¢) in those representations
g were a sure function of ¢, then S(¢) would of course be that sure function

for which



